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Abstract

A graph is well-covered if évery maximal independent set is also a maximum independent
s't. A 1-well-covered graph G has nthe additional property that G-v is also well-covered for
every point v in G. Thus, the 1-well-covered graphs form a subclass of the well-covered
graphs. We examine ;riangle-frec 1-well-covered grapﬁs. Other than Cs and K,, a 1-well-
covered graph must contain a triangle or a 4-cycle. Thus, the graphs we consider have
girth 4. Two constructions are given which yieid inﬁnitevfamilies of 1-well-covered graphs

with girth 4. These families contain graphs with arbitrarily large independence number.
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A CLASS OF WELIJ-COVERED GRAPHS WITH GIRTH FOUR

INTRODUCTION

A set of points in a graph is independent if no two points in the gréph are joined by
a line. The maximum size possible for a set of independent point‘s in a graph G is called the

independence number of G and is denoted by G). A setof independent points which

- attains the maximum size is referred to as a maximum independent set. A set S of

independent points in a graph is maximal (with respect to set inclusion) if the addition to S
of any other point in the graph‘ destroys the independence. In general, a maximal
independent set in a graph is not necessarily maximum.

In a 1970 paper, Plummer [10] introduced the notion of considering graphs in
which every maximal independent set is also maximum; he called a graf’n having this
property a well-covered graph. The work on well-covered graphs that has appeared ih the

literature has focused on certain subclasses of well-covered gréphs. Campbell [2]

characterized all cubic well-covered graphs with connectivity at most two, and Campbell

and Plummer [3] proved that there are only four 3-connected cubic planar well-covered

| graphs. Royle and Ellingham [13] have recently completed the picture for cubic well-

covered graphs by determining all 3-connected cubic well-covered graphs.
For a well-covered graph with no isolated points, the independence number is at
most one-half the size of the graph. Well-covered graphs whose indepeﬁdence number is

exactly one-half the size of the graph are called very well-covered graphs. The subclass of

very well-covered graphs was characterized by Staples [14] and includes all well-covered . yioiv g -

. e

trees and all well-covered bipartite graphs. Independently, Ravindra [11] characterized 3 s:g&' 8

C

bipartite well-covered graphs and Favaron [6] characterized the very well-covered graphs. ;';:“’; nceg L
LaTior

Recently, Dean and Zito [4] characterized the very well-covered graphs as a subset of a v -
| oy Yoo \X¢

more general (than well-covered) class of graphs. Distribution
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2

Finbow and Hartnell [7] and Finbow, Hartnell, and Nowakowski [8] studied well-

covered graphs relative to the concept of dominating sets. Finbow, Hartnell, and
Nowakowski have also obtained a characterization of well-covered graphs with girth at
least five [9].

A well-covered graph is 1-well-covered if and only if the deletion of any point from
the graph lea\}es a graph which is also well-covered. A well-covered graph is in the class
W>ifand ohfy if any two disjoint independent sets in the graph can be éxtended to disjoint
maximum independent sets. Staples [15] showed that a well-covered graph is 1-well-
covered if and only if it is in W2. Since we will appeal mostly io the notion of extending
wo disjoint independent sets to disjoint maximum independent sets, henceforth we use the
W> nomenclature instead of referring to 1-well-covered graphs.

i Tiw lass of well-covered graphs contains all complete graphs and all complete
bipartit g:aphs.of the form Knn. The only cycles which are well-covered are C3, C4, Cs,
and C3. We¢ note that all complete graphs are also in Wy, but no complete bipartite graphs

(except K1) are in Wy, The cycles C3 and Cs are the oniy cycles in Wi,

PRELIMINARY RESULTS

We assume that all graphs are connected, unlessiotherwise stated. The reader is
referred to [1] for terminology and notation not defined Lcre. Note that a disconnected
graph is in W, if and only if each of its ccmponents is in W,. Suppose G is well-covered,
G # K;. Letv be a pointin G and consider the graph Gll. Since G # K, there exists a
point u ~ v. Since G is well-covered, the point u is contained in a maximum independent
setlin G. Clearly, vis notin I. Thus, 1is alsu independent in G-v. Consequently, (G-
v) = a(G) for any point v. Hence. from a result of Erdds and Gallai [5] it follows that

a(G) <1V(G)I/2. Thus, W graphs inherit this bound on independence number.

Staples [15] proved that a W; graph cannot have an endpoint.
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Theorem 1. If Ge W; and G is not complete, then & = 2.

If v is a point in the graph G, then denote the neighborhood of v by N(v). Let G,
be the graph induced by G - { v U N(v) }. Camgbell [3] found the following very useful

necessary condition for a graph to be well-covered.

Theorem 2. If a graph G is well-covered and is not complete, then G, is well-covered

for all v in G. Moreover, o(G,) = o(G) - 1.

Fortunately, we prove in Theorem 3 that we have a similar necessary condition for

a well-covered graph (0 be in W2. We will reference Theorem 3 several times in this paper.

Theorem 3. If a graph G is in W and G is not complete, then Gy isin W, for all vin G.

Proof. Letvbe apointin G. Since G is not complete, then G, Q. By Theorem

2, graph G, is well-covered and a(G,) = a(G) - 1. Suppose 11' and I, are disjoint
independent sets in G,. ThenI; L {v}' is an independent setin G, as is I LU {v]}. Since G
is in Wo, there exists a maximum inuependent setJ; 21, U {v} such thatJ; N1, = @.
Since I U-{v} and J;-v are disjoint independent sets in G, then there exists a maximum
independentset J, 2 U {Q} such that Jo N (J3-v) = @ Hence, jz-v énd Ji-v are disjoinvtﬁ
independent sets in G,. Since 1Jl = a(G), then 1J;-vl = a(G) - 1, fori=1,2. Thus,J;-v
contains Iy, J,-v contains I, and J;-v and J,-v are disjoint maximum indenendent sets in
G.. So any two disjoint independent sets in G, can be extended to disjoint maximum

independent sets in G,. By definition of the class W3, we conclude that G,c W,. ]

We prove in the following theorem that if a W, graph has a cutpoint, then the graph

obtained by deleting the cutpoint is also a W3 graph.




=l Theorem 4. If Ge W; and v is a cutpoint of G, then G-v e W,

Proof. Let Hy, H,..., Hy be the components of G-v. Let xe V(H,;) and ye V(H,)

such thatx ~v and y ~ v. By Theorem 3, the graphs Gy = G-N[y] and G, = G-N|[x] are in

W. Clearly, H; is a component of Gy, for i # 2, and H; is a component of G, for j # 1.

Hence, H; is a W, graph for all i. It follows that G-v is also a W5 graph. 1

In orcer to consider triangle-free W5 graphs, we intrnduce some tenninology given
in [9]. A 5-cycle in a graph is called a basic S-cycle provided that it contaihs no two
adjacent points of degree 2 3 (that is, at most two points in the 5-cycle can have degree 2 3
B and two such points must be nonadjacent). A graph G is in the family PC if V(G) can be
partitioned into two sets V(C) and V(P) such that V(C) contains points from basic 5-cycles
in G and V(P) contains points from pendant lines in G; in addition, the lines induced by -

V(P) must be independent. Two graphs in PC are given in Figure 1.

— Fi gure 1 \

} The girth of a graph is the size of a smallest\,:yc!e in the graph. We say a gréph

with no cycles has infinite girth. Finbow, Hartnell and Nowakowski [9] proved that the
family PC described above contains all well-covered graphs with girth at least five, except

K}, C7, and the four graphs shown in Figure 2. We state their result in the next theorem.
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Figure 2

Theorem S. Suppose G is well-covered with girth 2 5. Then Ge PC or

Ge (K1,C7,P10,P13,Q13,P14}.

Y ) We need Lemma 6 to show that K and Cs are the only W3 graphs in PC.

e Consequeéntly, we prove in Theorem 7 that a W3 graph other than K, and Cs has girth at

, most four.

Lemma 6. If G is in PC with girth 2 5 (G # K3 or Cs), then Ge W».
- | Proof. Suppose Ge W,. By Theorem 1, we have 8§22, So GePCand 822

together imply that {C;}, i = 1,...,n, partitions V(G), where each Ci is a basic 5-cycle.

j Since G # Cs, theni 2 2.




Now C; is joined to one or more of the C; (i 2 2) by one or more lines. Without
loss of generality, assume C is connected to C; by line € = uv. Let Cy = uabcd and C; =
vwxyz. Since C is a basic S-cycle then either v is not adjacent to b or v is not adjacent to

¢. We can assume that v is not adjacent to ¢. Since v ~ u, then deg(a) = 2. Thus, {v.c} is

- independent and so {v,c} and {a} dca't extend to disjoint maximum independent sets in G,

a contradiction since Ge W5. ' {

Theorem 7. If Ge W5 (G # K; or Cs), then girth G £ 4.

Proof. Suppose girth G 2 5 and G is well-covered. By the préceding lemma, if
Ge PC then Ge W;. From Theorem 5, it Ge PC, then Ge {K'I,C7,P10,P13,Q13,P14]; It
is straightforward to check that each of these 6 graphs is not in W by finding a pair of

disjoint independent sets that do not extend to disjoint maximum independent sets. Thus, if

G is well-covered with girth 2 5, then Ge W». ' : (1

Hence, a W graph (other than K3 and Cs) must contain a triangle or a 4-cycle.
Thus, a triangle-free W, graph (other than K; and Cs) has girth 4. We study W, graphs of
girth four for the remainder of this paper.

A line in a graph G is a ¢ritical line if its removal increases the independence

 number. A fine-critical graph is a graph with only critical lines. Staples proved in [14] that

a triangle-free W graph is line-critical. Hence, all graphs given in the following

constructions are line-critical.
CONSTRUCTIONS

The following constructions show how to build a larger (in size and independence
number) W, graph of girth four from a given such graph with some additional propertiss.

The fact that the constructions yield W, graphs can be verified directly from the definition




of a W3 graph by showing that every two disjoint independent sets can be extended to two

disjoint maximum independent sets.

Construction 1. Suppose H is a W graph of giith4 and C isa 4-cycle in H such that
a(H-C) = a(H) - 1 and H-Cis in W». Let C = acbd and let xy be a new line and A =
v{Vav3ve be a new 4-cycle. Form a new graph G with | '
' V(G) = VH) U V(A) U {x,y), and

E(G) = E(H) U E(A) U (xy.vix,v3y,vaa,vahvac,vad). See Figure 3.
Then G is a W, graph of girth 4 with &(G) = a(H) + 2.

Figure 3

Suprose H, is the graph in Figure 4. If C is the 4-cycle in H, then H;-Cis a W,
graph. Alsc, a(H;-C) = 2 = (1) - 1. Thus, we can use H; to construct a larger Wz' -
graph of girth 4 with indepeiidence nunber 5 via the construction in Construction 1. Call

this graph Gs.

Figure 4




Lei Hj be the graph on 12 points in Figure €. Let C bhe the 4-cycle acbd, as
indicated in Figure 6. It can be checked that H, is a Wy geap:. with a(H,) = 4, and H,-C =
H,. Thus, q(Hg-C) = o(Hy) - 1, and H,-C is a W, graph. Thus, we can build a larger
W3 graph of girth 4 (with independence number 6) from H; via the construction in
Construction 1. Call this graph Gg. -

Let H; = G3. Note that Gs satisties the conditions in Construction 1, with the 4-
cycle A that was used to build Gs from Gj satisfying a(Gs-A) = a(Gs) - 1 and Gs-Ae Wa.
Hence, we can ohtain a W graph of girth 4 from Gs, call it G7, via the construction in
Construction 1. Therefore, by stérting with H; = G3 we can recursively use the
construction in Construction 1 to generate an infinite family of W, grapﬁs of girth 4,
namely Gj, Gs, Gy, Gy, . . ., where a(G) = n, for all odd n. Note that the "new” 4-
cycle used to construct Gogy frbm Ga.1isa 4-cycle in Gy, which satisfies the
conditions in Construction 1. Thus, we "attach” to this 4-cycle to construct Gay.,3 from
Gax.1 via the construction in Construction 1. Similarly, by starting with Hz = Gy, we can
recursively generate W, graphs of girth 4, namely Gg4, Gg, Gg, Gg.. . . » where a(Gy) =
n, for all even n. | |

By the nature of the construction in Construction 1, all grziphs in the two infinite
families just given are exactly 2-connectcd. In order to construct 3-connected and 4-

connected W, graphs of girth 4, we develop a different construction in Construction 2.




Construction 2. Suppoée His a W, graph of girth 4 with disjoint 4-cycles Cyand C;
such that (i) a(H-C;) = a(H) - 1, fori = 1. 2, and (ii) H-C; is a W; graph, fori = 1, 2.
Also, H is either connected or has exactly two components. In the disconnected case, each
component contains exactly one of the 4-cycles C;. |

LetCi= uLy1viXi, Cy = ugysvaxy, and let A = abed be a new 4-cyg:1c. Form a new
eraph G with |

V(G) = V(H) U V(A), and

E(G) = E(H) U E(A) U {auy,av),cxy,cyy,bxz,bys,dug,dv; ). See Figure 5.
Then G is a W graph of girth 4 and a(G) = a(H) + 1.

Figure 5

Note that in Construction 2, we allowed H to be the disjoint uﬁion of two W
graphs of girth 4, say G; and G, each containing a 4-cycle C; ﬁuch thatGi-Ciisa Wy
eraph and a(G;-Cy) = a(G;) - 1, fori = 1. 2. In this case, (G) = &(Gy) + a(Gy) + 1 and
G is exactly 2-connected.

Let H be the graph on 12 points given in Figure 6. It is straightforward to verify
that H is a W graph of girth 4. Let C; = uyvx and C; = acbd; then C; and C; are disjoint
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4-cyclesinH. . H-C; is isomorphic to ihie graph in Figure 4, fori= 1, 2. Thus, H-C;

isa W, graph and a(H-C:) = a(H) - 1, fori=1, 2.

corresponding o C; and C; by Cy i = ujyivix; and Cy; = ajcibid,, respectively.
Let H, and H; be twc copies of H. Obtain a new graph F; by adjoining a new 4-
cycle Aj to Cy,1 and Cy; as in Construction 2. See Figure 7. By Construction 2, graph

Fy is a W, graph of girth 4 and o(F}) = 2a(H;) + 1.

Figure 7

Since H;-Cy 2 is a W, graph, then by Construction 2 the graph F;-C) zis also a
\Vz graph. Moreover, a(Fl-C]'z) = Q(H-Cl'z) + a(Hz) +1= (G(Hl) -D+a(H)+1=
a(Hy) + aHy) = a(F;) - 1. Clearly, Fi-A; is a W, graph and o(F;-Ay) = a(F;) - 1. So

we form a new graph Fy ) from F by adjoining a new 4-cycle A;t0 Cy2and Ay by ths




I

construction in Construction 2. By.>’Construction 2, graph F} ) is a W graph of girth 4
with a.(F,_;j =a(F) + L. _

Clearly, Fy 1-Ajis in Wy and a(Fy 1-Aj) = a(F, 1) - 1. Since Hz-Cz.gl is in W5,
then by Construction 2 the graph FH_-Cz_z isin W,. Also, a(F}1-Cy2) = a(Fl;Cz.g) +1
=(F)-D+1=aF)= a(F“)' - 1. So we form a new graph Fj ; by adjoining a ncw
d-cvcle Aato A and Ca2 by the Ednsuuction given in Construction 2. Let Gy = F1 3. G
is shown in Figure 8. Then G, ivs a W3 graph of girth 4 by Construction 2. Also, G, is 3-
connzacted, IV(G))l = 36 and d(Gl) =2a(H;)+3=11.

Figure 8

We conjecture that it is possible to construct an infinite family of 3-connected W3
graphs of girth 4 by using Construction 2 and a tecﬁnique generdlized from that used to
construct the graph G, given above.

Beginning with H giQen above in Figure 6, we can obtain the graph H' given in
Figure 9 by two successive applications uf Construction 2. Thus, H' is a W, graph of

girth 4. Note that H' is 4-connected. We conjecture that it is possible to construct an




infinite tamily of 4-connected W; graphs of girth 4 by using Cerstruction 2 and by having

H' play the role of H above in constructing G;.

Figure 9

Not all W, graphs of girth 4 arise from the constructions given above. Neither of
the graphs given in Figure 10 can be built using our constructions. The graph on 13 points
is 4-regular and was found by Royle [12] using a computer program. Note that neither of

the graphs has any 4-cycle that satisfies the conditions in Construction 1 or Construction 2.

Figure 10




13
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Now that we have constructed some W graphs of girth 4, we look at minimum

point cutsets for such graphs.

Theorem 8. If G is a W3 graph of girth 4, then G is 2-connected.

Proof. Assumc to the contrary that G has a cutpoint v. Let Gy, Gy, ..., Gy, be the
components of G-v. By Theorem 4, graphs Gy, ..., G, are W5 graphs. LetN; = N(‘v) N
G;. fori=1,...,n. Since G has girth 4, then N; is independent for all i. Since G;e W3,
there exists maximum independent sets J; in G; such thatJ;AN;= Q, for all i. Clearly, J
=Jj V..U J; is an independent set in G. Consequently, J and {v} are disjoint
independent ﬁets inG whic.h do not extend to disjoint maximum independent sets in G.

This is a contradiction since Ge Wj. Hence, G is 2-connected. 1§

Lemma 9. Suppose G is a W, graph of girth 4 and {u,v} is acutset of G. If u ~ v, then
every component of G-{u,v}, except possibly one, is a W, graph.b |

Proof. Let G, ..., G, be the components of G-{u,v}. Let U;=N(u) 1 G; and
Vi=N() N G;, forall i. Since G has girth 4, then xe U; implies x is not adjacent to v,
and ye V; implies y is not adjacent to u, for alli. Also, U; and V; are independent sets,
for all i.

Suppose that xe U;, ye V; implies x ~y, foralli. LetU=U;u... U U, Then

.U and {v} are disjoint independent sets in G which do not extend to disjoint maximum

independent sets in G, contradicting Ge W,. Thus, there exists je {1, . .. ,'n} such that x
and y are points in G;, xe U;, ye V; and x is not adjacent to y.

Consider the graph G = G-N[x]. Since x is not adjacent to y, then ye G,. Since

Ge Wy, then by Theorem 3 so is Gx. The:. v is a cutpoint for G, and by Theorem 4, the
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graph Gx-v is a W7 graph. Since G; is a component of G,-v, for i # j, then G; is a W

graph,i#j. ' ' 8]

Theorem 10. Suppose G is a W, graph of girth 4 and {u,v]} fs a cutset for G.
Then {u,v} is independent.

Proof. Suppose u ~ V. Let Gy,.. ., Gy be the components of G-{u,v). Let U;=
N@) N G; and V;=N(v) " G;, for all i. Since G has girth 4, then U; and V; are disjoint
independent sets, for all i.

Case 1. Suppose G; isa W, graph, for all i. Then there exist maximum | )
independent sets J; in G; such that io Viand inU;=@, foralli. LetJ=J,u.. .U, |
Then J and {u} are disjoint independent sets in G which do not extend to disjoint maximuh‘
independent sets in G, contradicting Ge W,.

Case 2. So G;is nota W graph, for scme j. By Lemma 9, graph G; is a W,
graph fori#j. SoletJ; 2 V; be a maximum independent set in G; such that J; "\ U; = &, ]

foralli=j. Foreachis#j, pick x;eU;. Let X = {x;: i#]j). Clearly X is an independent ‘
set. By Theorem 3, the graph Gx = G-{X L N(X)} is a W graph.

Suppose there exists some ye V; such that y is not adjacent to x;, for some i # j.
Then v is a cutpoint for Gx. By Theorem 4, the graph Gx-v is in W3. Since Gx-v
contains G;as a componént and G; is not a W7 graph, we obtain a contradiction. Thus,

yeV; implies y ~ x;, foralli #j. A

Let H be the subgraph of G induced by G;u {v}. Since ye V; implies y ~ x;, for

alli # j, then H is a component of Gx. Since Gxe W5, then He W,. Hence, there exists
/ maximum independent set J; in H such that J;2 V;and J;n Uj=@. LetJ=Jyu. ..U,

Then J and {u) are disjoint independent sets in G which do not extend to disjoint maximum

independent sets in G. This contradicts Ge W».

Therefore {u,v} must be independent. - [
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Since a cutset of size two in a W5 graph of girth 4 is independent, we are led to ask
if the same is true for minimum cutsets of size three or more. The next two lemmas help to

answer the question for minimum cutsets of size three in W, graphs of girth 4.

Lemma 11. Suppose G is 3-connected W3 graph of girth 4 and {u,v,t} is a cutset for G.

Then {u,v t} does not induce exactly one line.

Proof. Assume to the contrary that {u,v,t} induces precxsely the line uv. Let Gy, .
.» G, be the components of G-{u,v,t}. Let Ui=N(@u) NG, Vi=N(v) " G;,and T, =
N NG;, foralli. |
“Since t is adjacent to neither u nor v, then we must have t~ x for all xe Ujandt~y
for all ye V;, for all values of i except possibly one. Otherwise, the graph G, is a W5 graph

with cutset {u,v}, contradicting Theorem 10. Without loss of generality, we assume t ~ x

forallxeUjand t~y for all y € V;, for all i # 1. Since G has no triangles, it follows that

the sets U; U V; are independent, fori # 1.

Consider any component different from Gy, say Ga. Choose s ~ t such that se V5.
Then the graph G; has u as a cutpoint. So by Theorem 4, graph G;-u is a W5 graph.

Since Gy isa cdmponent of G;-u, then G, is a W, graph.

Case l Suppose there exists ae Ul and be Vl suchthata~tandb~1t Since G
has no triangles, then a is not adjacent tob. Thus G,isa W2 graph which has v as a
cutpoint. By Theorem 4, the graph G,-v is a W graph. Since G;,i = 1,isa component of
G.-v, then G;, i # 1, is a W, graph. Thus, there.exist maximum independent sets J; in G;
such that ; A V; = @ (i # 1), and there exists a maximum independent set J; in G, such
thataeJyand 1NV =@. LetJ=J;U... U, ThenJand (v} are independent sets
in G which don't extend to disjoint maximum independent sets in G, contradicting Ge W. ' |

Case 2. So either tis not adjacent to a for all a Uy, or t is not adjacent to b for all

be V;. Without loss of generality, assume t is not adjacent to a for all ac U;.




\
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Case 2.1. Suppose T;-V;# Q. Let xe T}-Vy; thatis, t ~ x and xe V. From the
assumption t is not adjacent to a for all ae U}, we see also that xe U;. If there exists
ae U, such that x is not adjacent to a, or be V| such that x is not adjacent to b, then the W,
graph Gx has [u;v} as a cutset. This contradicts Theorem 10. Thus, x ~ a for all ae U,
and x ~ b for all be V. Since G has girth 4, then ae U; and be V; imply that a is not
adjacent to b.- Similarly, be V; implies b is not adjacenttot. Hence, Ty V=@ =T; N
U;. Therefore, T;-V) =T;. Thus, if ye Ty, it follows that y ~ a for all ae U;. |

Fix ze U;. From above, z ~ y for all ye T;. But then G, has v as a cutpoint and s0
by Theorem 4 the graph G,-v is a W7 graph.

Case 2.1.1. Suppose n 2 3. Then tis a cutpoint for G,-v. By Theorem 4, graph
G,-v-tis a W, graph. Since G;, i # 1, is a component of G,-v-t, then G;, i # 1, is a W
graph. Thus, there exist maximum independent sets J; in G; such that V; Ji% D=,
and there exists maximum independent set J; in Gy such thatzeJy and Vi1, = . Let]
=Jy V... UJs ThenJand (v} don't extend to disjoint maximum independent sets in G,
contradicting Ge W,.

Case 2.1.2. So assume n =2. Let H be the graph induced by Gout. ThenHisa
component of G,-v; hence, H is a W, graph. From earlier, U and V; are disjoint and
independent, and t ~ x for all xe U,. Since H is a W5 graph, there exists maximum
independent set Jy in H such that Jy 2 Uz and Jyn Vo=@, Note that teJy. Since G, isa
W3 graph, there exists maximum independent set J; in G; such thatzeJyand J; "V, = 2.
ThenJ=J,Ulyis independent in G. SoJ and {v} don't extend to disjoint maximum
independent sets in G, a contradiction.

Case 2.2. Thus, T;-V;=Q. Hence, V1 2 T;. Since U, and V; are disjoint
independent sets in Gy, then there exists maximum independent set J; 2 U, in G, such that
JinV;=0@. Butthen J, U (t} and {v} are disjoint independent sets in G which don't
extend to disjoint maximum independent sets in G, contradicting Ge W,.

Therefore, {u,v,t} does not induce exactly one line in G. ]
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Lemma 12. Suppose G is a 3-connected W5 graph of girth 4 with cﬁtset {u,v,t}. Then
{u,v,t} induces at most one line. | |

Proof. Assume to the contrary that {u,v,t} induces two lines, say uv and vt (since
G has girth 4, then {u,v,t} cannot induce three lines). Let Gy, ..., G, be the components
of G-{u,v,t}. Let U= N(u) A G, Vi = N(v) N G; and T;= N(t) A G;, for all i. Note that
U;N V=@ =V;"T;, for all i; however, we do not know that UinTi=@. '

Suppose for all xe Uj, for all i, that t ~ x. Then {t} and {u} don't extend to disjoint
maximum independent sets in G, contradictipg Ge W,. So, without loss of generality,
assume there exists some xe Uy such that t is not adjacent to x.

Suppose there exists some ze V, suéh that z is not adjacent to x. Then Gy has
{vit)asa cuiset, contradicting Theorem 10. -We are implicitly using Theorem 13 here,
which states that a W5 graph of girth 4 is 2-connected. Hence, ze V; implies x ~ z.

Since G is 3-connected, T = @. If there exists some ye T such that x is not

adjacent to y, then G will have {v,t} as a cutset, again contradicting Theorem 10. So

| veT; implies y ~x. Since G has githd4and x~yforallyeT,,then U NnT, =O.

Since x ~ y for all ye Ty and x ~ z for all ze V;, then ye Ty and ze V; mriies y is not
adjacent to z. Thus, if ye Ty, then Gy has (u,v} as a cutset. This contradicts Theorem 10.

Thercfore, {u v t} cannot induce two lines in G. Since G has gmh 4, it follows

that {u v,t} mduces at most one hne 0

With the two preceding lemmas, it is a simple matter to prove in the next theorem

that a minimum cutset of size three in a W, graph of girth 4 must be independent.

P




13

Theorem 13. If G is a 3-connected W graph of girth 4 with cutset {u,v,t}, then {u,v,t}

is independent.
Proof. By Lemma 12, the set {u,v,t} induces at most one line. By Lemma 11, the

set {u,v,t} does not induce exactly one line. Hence, {u,v,t} induces no lines in G; that is,

{u,v,t} is independent in G. ' 0

For minimum cutsets of size four or greater, we do not know if the cutsets must be

independent.
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